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Motivation and basic ideas

The  most  frequent  form  of  modelling  physical  events  is  based  on  parametric  approach.  The 
properties of the system are characterized by a vector of parameters p = (p1,p2,...pm), the response of 
the system is characterized by a data vector d = (d1,d2,...,dn). The vectors p fill up the vector space 
Pm with the dimension m, the vectors d fill up the vector space Dn with the dimension n and both 
vector spaces are related by forward mapping

d=F  p . (1)

Eq. (1) represents a system of  n non-linear equations for  m variables in fact. The goal of inverse 
problems is to find (all) solutions p0 satisfying measured data d0:

p0 :d 0=F  p0 . (2)

Basically two approaches are applicable for the solution to (2): (i) inversion and (ii) optimization. 
Both  methods  should  output  the  same  result,  but  great  differences  may  occur  as  regards  the 
efficiency and robustness in favour either of the first or second method. Anyway the solution to (2) 
using both inversion and optimization is a difficult job. Following features characterize inverse and 
optimization problems commonly solved in geophysics and in many other branches of physics and 
engineering:

 the mapping F is complex, the inverse mapping is not directly available or it may not exist at 
all

 the dimensions of P and D spaces are big (m,n >> 1)

 the problem is multivalued

 evaluating of the forward problem is time consuming

Inversion versus optimization

Let us consider the mapping G(d) is inverse to the mapping F(p) (G = F-1). In cases that the inverse 
mapping does not exist in entire spaces P a D, we can restrict ourselves to sufficiently small joint 
subspaces pPm and dDn respectively, inside which the mapping F is such smooth that the inverse to 
F does exist. Than the inverse problem to (1) can be formulated as follows

p0=F−1d0=Gd0 . (3)

In  favourable  situations  Eq.  (3)  can  be  used  immediately  (e.g.  if  both  G and  F are  linear). 
Unfortunately we do not know the exact form of G in general cases, and then Eq.(3) is of symbolic 
importance  only  and  other  specialized  procedures  are  necessary.  Inversion  means  mapping  of 
particular data vector to particular model vector.

An  alternate  approach  to  direct  inversion  aiming  at  finding  p0 according  (3)  is 
optimization - indirect method based on minimization of the misfit functional with respect to the 
vector p:

min Norm d 0−F  p=min p , p⇒ p0 (4)

where the most popular form of the norm is the standard L2 norm
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Normd0−F  p =d T Cd
−1
d

d=d0−F  p
, (5)

where  Cd is  the  data  covariance  matrix.  Great  number  of  methods  are  known for  finding  the 
minimum of (4) (for an overview see e.g. www3, Press et al. 2007, etc.). Optimization includes the 
elementary mapping of the parameter vector to the norm, i.e. mapping the m-dimensional space to 
one-dimensional space. This mapping is not invertible (it is impossible to specify many parameters 
from a single norm), and definitely some loss of information takes place. All manipulations inside 
optimization  are  much  simpler  on  the  other  hand,  since  it  is  not  necessary  to  deal  with  great 
dimensions  of  the  data  space  like  inside  inversions.  Basic  problem for  optimization  is  not  the 
existence  or  non-existence  of  the  mapping  F and  its  specifics,  but  the  particular  choice  of  the 
method used for searching in the space P.

Important differences between inversion and optimization are summarized in the following Table 1.

Table 1

Inversion Optimization

basis of the method mapping searching

norm of the fit L2 or not defined arbitrary according the 
definition

dimensions of working spaces m,n m,1

multimodality* not allowed allowed
* multimodality = many formally equivalent solutions are possible

ANNIT Algorithm

The ANNIT** algorithm is an inverse (not optimizing) algorithm, utilizing numerical approximation 
of (3) in empirically constrained subspaces {pPm, dDn}. The existence of inverse mapping inside 
these subspaces is supposed, and thus the existence of its numerical approximation is also supposed. 
This  numerical  approximation  is  used  for  the  prediction  of  the  solution.  Since  this  method  is 
approximate, the algorithm is arranged into iterative cycles and the solution is gained successively. 
The appropriate block-diagram can be found in the Fig.1.

** ANNIT =  Artificial  Neural  Network  Inversion  Tool.  ANNIT is  a  successor  of  previously developed  optimizing 
algorithm  ANNO (Artificial  Neural  Network  Optimization). It  is appearing that many applications are solved more 
efficiently by using inversion compared to optimization. Usually real measurements give right hand sides of non-linear 
equations in a natural way thus evoking to directly solve a set of non-linear equations. The first ANNIT version has been 
implemented with the only one predictor built from the network of radial basis functions, which belong to the class of 
Artificial Neural Network (ANN). Later on the range of predictors has been broadened even outside ANN. Therefore the 
ANN technology is nor unavoidable in ANNIT or a dominant component. From historical reasons the reference to ANN 
is retained in the name of the algorithm.

ANNIT is working simultaneously with a population of  q models (individuals). Each model  M is 
constituted from a parameter vector, data vector and the model error:

M i={p i ,d i , err i} ,i=1,2,3,. ..q . (6)

The model error  erri can be in the form of Eq. (5), but any other form with the same qualitative 
content is also acceptable. The absolute magnitude of the error is not important, since  ANNIT is 
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using this quantity only for relative classification of distinct models within the population and for 
their sorting from the best to the worst model.

Such computer implementation of the algorithm is considered, which records already evaluated and 
tested models when these models can be used later. Repeated usage of some models generates the 
possibility of efficient inversion with minimum number of forward evaluations.

Initialization

All necessary control parameters are read, all necessary variables are initiated and all necessary 
arrays are allocated in the initialization part. Next computations will be limited to parameters lying 
inside the hypercube defined by the user:

p i
min≤pi≤p i

max , i=1,2,3,. .. m . (7)

If the true solution is outside such hypercube, it will be never discovered. Starting population of 
models is generated in the allowed hypercube with an uniform probability. ANNIT does not allocate 
any specific model into the starting population, even if such possibility is easy applicable. More 
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Problem initialization

Population {pi, di, erri}, i=1,2,3,...q

Sub-population selection

{pi, di, erri}, i ℮{1,2,3,...q}

Candidate solution prediction

{pi, di} → px

Evaluation

dx = F( px)

Stop test

Correction of prediction and selection 
criteria

END

Forward_modelling_box(p)

d = F(p);

return d;

Archive of evaluated models

{p1, d1, err1}

{p2, d2, err2}

{p3, d3, err3}

...

{pk, dk, errk}

free space

Fig.1. Block diagram of the ANNIT algorithm.



general approach without specifying starting model is preferred instead. Searching for the solution 
is fully in the competency of the algorithm itself and it follows naturally principles of the inverse 
process. The size of the starting population q is not very important (it will change during iterations), 
but suitable choice can be 5m ≤ q ≤ 10m. Each model evaluated during the initialization stage is 
saved in  the archive,  so the archive contains  q models  in the beginning.  Current population  of 
models is sorted according individual errors of the models and candidate solution (i.e. the model 
with the least error) is called MB:

M B={ pB ,d B ,err B} , err B=minerr i , i=1,2,3,. ..q. (8)

The diameter of the population  R a the index of the prediction function  ip are important control 
parameters.  The  diameter  of  the  population  defines  the  size  of  a  subregion,  inside  which  next 
population of models will be generated, and index of the prediction function specifies prediction 
method used for predicting the candidate solution. Both parameters are tuned during the inversion, 
in the beginning they are set to  R = 1,  ip = 1. The way how these parameters are working will be 
explained later.

Geometry of the population

Individual populations of models generated in distinct iteration cycles follow the unique geometric 
criterion: one model is selected and declared as a centre of the population, and other q - 1 models 
are located randomly in the distance R measured from the centre of the population (with the only 
one exception in the beginning, when the initial population covers the parametric space  Pm with 
uniform  probability).  It  is  therefore  important  to  properly  define  all  necessary  geometric 
characteristics. Geometric relations are regarded only in the parametric space Pm. The geometry in 
the data space Dn (it is different from the geometry in Pm) is not regarded, since its adjustment is not 
immediately possible (we cannot freely adjust vectors d, to which corresponding model patterns p 
are not known).

Metric tensor Cm is introduces in parametric space Pm as follows

Cm
=[

 p1
2 0 ... 0

0  p2
2 ... 0

... ... ... ...
0 0 0  pm

2 ] , pi=pi
max

− pi
min

, (9)

and distances s in Pm are evaluated according the formula

s2
=∣p1−p2∣

2
=∣ p∣2= pT

Cm

−1
 p (10)

Distance  s from  Eq.  (10)  is  a  dimensionless  quantity,  so  all  possible  differences  in  physical 
quantities represented in individual dimensions of the vector p are cleared. Distances depend on the 
size  of  the  allowed  parametric  hypercube  on  the  other  hand.  The  length  of  each  edge  of  the 
parametric hypercube is s = 1, and the length of its body diagonal is depending on the dimension of 
the parametric space s = m1/2.

Any time the centre of the population pC is defined relatively to the parameter space

pC=〈 p i 〉 , i=1,2,3,... q (11)

and the diameter of the population R as the mean distance between satellite models and the centre of 
the population
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R=〈∣ pi− pC∣〉 . (12)

It could be shown, that the hypersphere with the diameter R = ½ and with the centre pC exactly in 
the middle of the parametric hypercube is a body escribed into this hypercube.

Generating a new population is controlled by the location of the centre pC and the diameter R. Every 
newly  generated  satellite  model  has  random  position  along  the  surface  of  a  hypersphere 
H := {pC, R}. As a rule, the centre of the population  pC is set up to the so far best model  pC = pB, 
see (8).

Next important geometric quality is the mean distance rd between neighbouring satellite models (i.e. 
between models of the population except the centre).  This distance depends on the diameter  R, 
number of models constituting the population q and also on the dimension of the model space m. 
The appropriate formula sounds (see Appendix A.1)

r d=2 . R .
m−1

q


1
m−1 .

1
2 .


m−1
2



 
m
2


, (13a)

and for m >> 1 quite simpler estimate can be used

r d≈4 R
m
q


1
m . (13b)

Predicting population

The prediction of the candidate solution (see the following text) can be done only using suitably 
configured population of models.  The models of this prediction population should surround the 
searched  solution  in  an  ideal  case  (in  order  to  work  in  interpolation  regime  and  not  in  an 
extrapolation one), and the geometric size of the population should be small (in order to ensure the 
existence of local approximation (3) and maybe this approximation be close to linear mapping). The 
prediction population is therefore generated in such a way, that the centre is located close to the 
expected solution, and satellite models are located randomly along the surface of a hypersphere. 
The upper limit of the diameter of the hypersphere is estimated such that consecutively predicted 
candidate  solution  should  lay  still  inside  the  hypersphere.  Let  the  centre  and  diameter  of  the 
constituted population is defined {pC, R}. In the first cycle pC is selected randomly and R = 1. How 
these  control  parameters  are  tuned  in  following  iterations  is  explained  in  the  part  “Prediction 
corrector”  later  in  this  text.  Provided  the  parameters  {pC,  R}  are  known,  new  models  of  the 
predicting population are gained according the following steps.

i. The centre of the population {pC, dC, errC} is connected to the population as the first model.

ii. Metric tensor Cm is decomposed using Choleski decomposition Cm = L.LT.

iii. Following steps iv. - ix. are made q-1 times in order to get the population of the total size q.

iv. Random m-dimensional unit vector g = (g1,g2,...gm), ∑(gi)2 = 1 is generated.

v. Candidate model pg = pC + R.L.g is proposed.

vi. In case the candidate model pg is outside the parametric hypercube, it is projected along the 
direction (pg - pC) to the closest face of the parametric hypercube.

vii. The archive  of  already evaluated  models  is  checked and the  k-th  model  {pk, dk, errk} is 
selected.  This  k-th  model  is  closest  archive  model  to  pg and  still  not  connected  to  the 
predicting population. The distance sg =|pg - pk|2 is computed according (10).
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viii.If sg < rd, instead of pg the archive model {pk, dk, errk} is connected to the population.

ix. If  sg ≥ rd  ,  the  model  pg is  evaluated  dg = F(pg),  model  error  errg is  computed  and  the 
completed model {pg, dg, errg} is both connected to the predicting population and copied to 
the archive for future usage.

Models generated this way surround the centre pC in the distance R. Some models of the constituted 
prediction population may be close to some model already evaluated in the past. Probability of such 
event  is  increasing  with  growing size of  the  archive.  In  such  case the  proposed  model  can  be 
substituted  by  archive  model  and  it  is  no  more  necessary  to  evaluate  forward  problem.  The 
efficiency of  this  substitution  approach is  monitored  during inverse process.  In other  cases the 
evaluation of the forward problem is necessary.

Prediction of the candidate solution

Suitable population of models {pi, di, erri}, i=1,2,3,...q is available in the prediction stage. The goal 
is now to use information in the population for predicting the solution (3). Prediction module can be 
arbitrary modified provided formal requirements put on input and output are satisfied:

population of models{ pi , d i ,err i
}〚prediction algorithm〛 candidatesolution p0 (14)

Only the algorithm of Radial  Basis Function Network (RBFN) was implemented in the original 
version of  ANNIT. Following experiments have shown, that different prediction algorithm behave 
more or less occasionally in diverse environments. The best solution is therefore to use different 
prediction  algorithm even inside each individual  inverse problem. Current  version of  ANNIT is 
using  three  implemented  prediction  algorithms,  and  their  selective  efficiency  is  continuously 
monitored:

i. linear regression

ii. prediction by using RBFN

iii. linear prediction (also known as “Kriging”)

The ANNIT algorithm can be freely supplemented by other prediction methods in the future.

Prediction by using linear regression

This method is the least square method in fact. Linear problem is expected to be solved:

F  p =A pd c=d (15)

where A is a n x m matrix and dc is vector with dimension n. Predicted solution is evidently

p0=pinv A .d0−d c . (16)

The function pinv(A) is pseudoinverse of matrix A. It is necessary to know all elements both of A 
and  dc for evaluating  (16). Appropriate computations of these elements is based again on linear 
algebra and for exact explanation see the Appendix A2. Incorporation of single linear regression 
into a priori non-linear difficult to solve problems is advantageous for several reasons:

 some configuration of models in a population can well approximate the solved problem even 
by using simple linear functions and resulting prediction can be good candidate solution 
thanks to fortune,

 the solved non-linear problem should be closer to linear one with advancing convergence if 
the  true  mapping  F is  “reasonably  smooth”  and  linear  regression  has  real  chances  for 
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success in the final phase of the inversion,

 even essentially non-linear problem can behave like effectively linear one thanks to special 
configuration of measured data.

If some of the above supposition is true, using linear regression is extremely efficient. Strictly linear 
problem is solved exactly in one step. If the suppositions are false, no extra degradation of the 
efficiency takes place, since the internal overhead needed for linear regression is relatively small.

Prediction by using Radial Basis Function Network

Radial Basis Function Network (RBFN) is used in the ANNIT algorithm for local approximation of 
the inverse mapping (3). This is much more general approach compared to linear regression from 
the preceding text. Using RBFN flexible modelling of different configurations of parameters and 
data is possible, linearity is not a requirement. Standard form of RBFN, which theory is documented 
e.g. in v Press et al.2007 or Orr 1996 is used.

Individuals  of  the  predicting  population  {pi, di, erri}  are  selected  as  the  centres  of radial  base 
functions. A system of q base functions hi(d0) is then introduced

hid0=
1

1r i
2


r i
2
=d 0−d i

T
CD


−1
d 0−d i

(17)

where d0 is “arbitrary” vector in data space (in fact the vector d0 can not be selected fully arbitrary, 
since it must be close enough to the centres of radial basis functions in order to be in their effective 
range),  di is data vector of the  i-th individual,  CD is data covariance matrix and  ri is the distance 
between d0 and di. The function hi in (16) is so called “inverse multiquadric function”, but plenty of 
other function can be used as well (see Appendix A3). Particular choice of radial function has no 
significant influence on the inversion. Prediction of the parameter vector p0 corresponding to data 
vector d0 is made according the following scheme

p0=Hw

w=[
h1d 0

h2d 0

...
hq d 0

] (18)

where w is weighting vector (i-th component gives the value of basis function which argument is 
the distance between d0 and the centre of i-th basis function), and H is variance matrix determined 
from the requirement that (18) is valid for all centres of basis functions as well. The way how the 
elements of H are evaluated is given in Appendix A4 and further detailed discussion can be found 
e.g. in Orr 1996.

Even though the RBFN method is  relatively  general  interpolation  tool,  it  has  some restrictions 
limiting the applicability range. Fundamental problems can arise if the mapping (1) is not unique 
and thus the inverse mapping (3) does not  exist.  Such situation  can not be easily  and reliably 
detected from finite number of individuals constituting the prediction population. Even then the 
non-uniqueness is known in advance it is not possible in general terms to specify subspace where 
the inverse mapping is correct.  ANNIT solves this problem by heuristic (empirical) changes of the 
size and location of the predicting population as described later.
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Prediction by using linear prediction algorithm - “Kriging”

Kriging  method  (also  known as  “linear  prediction  method”)  exists  in  several  slightly  different 
variants. ANNIT uses standard formulation without considering errors, see e.g. Press et al.2007, or 
www2. Basic quantity, which is indispensable for realization of linear prediction, is the variance of 
parameter vector's coordinates as a function of distance measured in data space:

v r =〈[ pi−p j]⊗[ pi−p j]〉

r=∣d i−d j∣
. (19)

The  smooth  function  v(r)  of  smooth  parameter  r (so  called  variogram)  is  determined  from 
population's individuals {pi, di, erri}. Simple approximation is considered according usual practice

v r ≈r 1.5 (20)

where  m-dimensional vector  α is sufficient to determine (for each dimension of parameter space 
separately). It is possible to compute the distance in data space between any pair of individuals and 
also the variance  v(r) according (19). Predicted vector  p0 is given as a linear combination of all 
parameters in the population, for l-th component of the vector p0 holds:

p0l=v0
T V−1 p l

p l= [ p1l p2l ⋯ pql 0 ]
T . (21)

Elements  of  the vector  pl are  constituted  from  l-th  components  of all  parameter  vectors  in  the 
predicting  population.  The  matrix  V is  variance  matrix  (different  for  each  dimension  of  the 
parameter spacer) and corresponding to the geometry of the predicting population as seen from the 
data space:

V=[
v11 v12 v13 ⋯ v1q 1
v21 v22 v23 ⋯ v2q 1

⋯ 1
vq1 vq2 vq3 ⋯ vqq 1
1 1 1 ⋯ 1 0

] (22)

where vij = v(|di - dj|). Analogously the vector v0 is variance vector corresponding to the geometry of 
predicted vector as regards predicting population:

v 0
T=[v01 v02 ⋯ v0q 0 ] (23)

and v0i = v(|d0 - dj|), d0 is measured data.

All prediction methods have similar mathematical form. Also the results are similar if interpolation 
regime takes place. Totally different results are obtained in extrapolation regime and asymptotic 
behaviour of distinct methods is also totally different. Simple one-dimensional example is presented 
in Appendix A4.

Prediction corrector

The quality of prediction can be controlled in principle due to the following adjustable items:
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1. Prediction method currently used

2. Configuration of the predicting population, i.e.

2.1.Number of individuals constituting the population q

2.2.Geometric size of the population, i.e. the diameter R

2.3.Localization of the population, i.e. localization of its central individual pc

The measure how the error of the best individual min(errB) is decreasing is intended under the 
prediction quality.

Add.1. ANNIT has  implemented  three  prediction  algorithms  (linear  regression,  RBFN,  linear 
prediction). These algorithms are regularly used in a cyclic manner according the variable ip:

Table 2

Iteration Nr. ip Prediction method

1 1 Linear regression

2 2 RBFN

3 3 Kriging

4 1 Linear regression

5 2 RBFN

6 3 Kriging

... ... ...

It has been shown empirically that using different prediction methods is advantageous. If complex 
problem is solved, probability of misbehaving of some method is growing with time. If this method 
is  used exclusively,  all  the computations  can crash.  When solving simpler  problem it  does not 
matter which method is used on the other hand, since the efficiency of different prediction methods 
is comparable (the only exception is pure linear problem, which is solved by using linear regression 
exactly).

Simple  cyclic  changing  of  prediction  methods  can  be  replaced  by more  sophisticated  irregular 
calling  of  selected  methods.  The  frequency  of  calls  can  be  proportional  to  the  efficiency  of 
individual prediction methods (the variable  ip is set up based on statistical criteria). Appropriate 
testing did not show any significant improvement of this rather cumbersome approach.

Add.2. Let us recapitulate first the prediction process according the Fig.2. So far the best individual 
{pB, dB, errB} drawn in red is selected as the centre of the predicting population. Satellite individuals 
are located in random positions around the centre in the distance R from the centre. The geometry in 
data  space  is  generally  not  conserved:  satellite  individuals  are  no  more  on  the  surface  of  a 
hypersphere and  dB need  not  to  be  the centre  of  the  population.  Prediction  px is  made for  the 
measured data d0 (in violet). The position of px with respect to the population can be characterized 
by the distance from the centre  R' = |px - pc|. If  R' ≤ R, interpolation regime is indicated (generally 
favourable situation), if R' > R, extrapolation regime is indicated (generally unfavourable situation). 
Since the procedure is approximate only, instead of data vector d0 other vector dX corresponds to the 
predicted parameter vector pX. The difference d0 - dX characterizes the prediction error errX.

Thus it is monitored in each iteration step, if “interpolation prediction” (R' < R), or “extrapolation 
prediction” (R' ≥ R) has been made– see the first column of the Table 3. Other monitored quality is 
whether the predicted model becomes the currently best one (errX < errB) or not (errX ≥ errB) – see 
the  second  column  of  the  Table  3.  The  number  of  consecutive  iterations  during  which  no 
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improvement has been reached (variable  nwait) is also monitored. Based on these information 6 
stages 1-6 are distinguished, which are further in two cases subdivided into two sub-stages 3a/b and 
6a/b, resp. The parameters  R a  pC responsible for generating the next population are modified in 
each iteration using following rules.

Case 1: Convergence indicated

This is the most promising situation from the point of view of the further advance. The true solution 
is expected to be somewhere inside the predicting population and it is believed that more precise 
result will be obtained by using smaller population surrounding the currently best model.

Case 4: Population movement indicated

The simplest explanation for this case is that the prediction population is located eccentrically the 
expected solution. Adequate response is therefore simple movement of the population like a rigid 
body, and its size will be conserved in the next iteration.

Cases 2 and 5: Stagnation indicated

Since no improvement occurred in these stages, suppositions for the correct functionality of the 
algorithms are probably not met.  Simple changing the particular configuration of the predicting 
population using the same generating rules may help in less significant situations, so this stage is 
tolerated for a limited number of consecutive iterations. The allowed number of stagnation cycles is 
scaled according the model space dimension (nwait ≤ m). Individuals are generated in next cycles 
randomly around the fixed centre and in the same distance from the centre.

Cases 3 and 6: Reactivation of inverse process is necessary

If the stagnation regime persists too long (nwait = m), deeper intervention into the inverse process is 
necessary. This is achieved by increasing the geometric size of the population to maximum (R = 1) 
and also movement of the population centre pC to random position of the model space (with 50 % 
probability). The counter of stagnation cycles is cleared (nwait = 0).

Add.3. Since the efficiency of ANNIT can dramatically change depending on the size q (= number 
of individuals) of the predicting population, it is convenient to reflect this fact. No exact formula for 
optimum q is known due to the diversity of solved problems. ANNIT solves this dilemma in such a 
way, that individual value of q is set up randomly in each iteration cycle with a uniform probability 
in the range  m +1 < q <10m. The lower limit follows from the requirement for unique solution to 
the set of equations (A11 – A17). The upper limit corresponds to reasonable size of solved relations 
regarding the dimensions of the problem.
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Table 3

R' errX Adaptation of pC Adaptation of R Case

R' < R

Predicted model 
is inside the 
volume spanned 
by predicting 
individuals

errX < errB

Predicted model 
is the best one 
from now.

Predicted model set as the 
centre of the next 
population:

pC → pX

Decrease the size of the 
next population, e.g.

R → R/2.
1

errX ≥ errB

Predicted model 
is not the best 
one.

Do nothing if this occurred no more than preselected 
number of cycles, e.g.

nwait++ < m
and repeat with iterations.

2

If this occurred exactly m-
times, nwait++ = m :
 nwait = 0;
 Set the centre of the next 

population with 
probability 50% to the so 
far best model:

pC → pB

 otherwise select pC 

randomly inside the 
allowed hypercube:
pC → rand(pmin xpmax)

Set the size of the next 
population to the full size, 
i.e.

R = 1;

3a,b

R' ≥ R

Predicted model 
falls outside the 
predicting 
population.

errX < errB

Predicted model 
is the best one 
from now.

Predicted model set as the 
centre of the next prediction 
population:

pC → pX

R unchanged 4

errX ≥ errB

Predicted model 
is not the best 
one.

Do nothing if this occurred no more than preselected 
number of cycles, e.g.

nwait++ < m
and repeat with iterations.

5

If this occurred exactly m-
times, nwait++ = m :
 nwait = 0;
 Set the centre of the next 

population with 
probability 50% to the so 
far best model:

pC → pB

 otherwise select pC 

randomly inside the 
allowed hypercube:
pC → rand(pmin x pmax)

R unchanged 6a,b
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Numerical tests

The method similar as in (Málek et al. 2007) was used for testing the efficiency of ANNIT. 
Scalable set of polynomial equations enable to flexibly set up both model and data spaces 
dimensions and also the measure of non-linearity.

1. Linear case  

aij p jr i=d i ,
i=1,2,⋯, n ; j=1,2,⋯ ,m

(24a)

2. Quadratic case  

aij p jb ijk p j pkr i=d i

i=1,2,⋯, n ; j ,k=1,2,⋯,m
(24b)

3. Cubic case  

a ij p jbijk p j pkcijkl p j pk p lr i=d i

i=1,2,⋯, n ; j , k ,l=1,2,⋯,m
(24c)

4. Biquadratic case  

a ij p jbijk p j pkcijkl p j pk p ld ijklo p j pk pl por i=d i

i=1,2,⋯, n ; j , k ,l ,o=1,2,⋯ , m
(24d)

5. etc.  
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Fig.2. Schematic demonstration of the predicting population both in model and data spaces and the process of  
predicting the candidate solution. See also the appropriate text.



The coefficients  aij,  bijk, ...dijklo,  ri are adjusted in all cases (24a-d) as random numbers from the 
interval <-1; +1>, the solution to be found pi is also random vector with components in the interval 
<-1; +1>,  and  forward  problem (24a-d)  gives  synthetic  data  di.  Alternatively  right  sides  of  all 
equations can be contaminated by synthetic noise.

The number of equations  n is selected in order to ensure the uniqueness depending on the model 
space dimension as is documented in the Table 4.

Table 4

problem number of equations example A example B

linear n = m m = 5, n = 5 m = 10, n = 10

quadratic n = 2m m = 5, n = 10 m = 10, n = 20

cubic n = 3m m = 5, n = 15 m = 10, n = 30

biquadratic n = 4m m = 5, n = 20 m = 10, n = 40

Convergence curves for all tested polynomial problems (except of linear problem which is solved 
even in the first iteration exactly) are depicted in the Fig.3 any time for 10 different randomly 
selected sets of coefficients. The correct solution was found in all cases, nevertheless sometimes 
was searching of the correct zone of attraction rather longer.

Sets  of  non-linear  polynomial  equations  do  not  represent  any  particular  physical  problem. 
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Fig.3. Convergence curves for a set of polynomial problems. Horizontal coordinates in each graph correspond to  
the number  of  forward evaluations,  vertical  coordinates  correspond to the error  of  candidate solution. Black  
curves were obtained by using the ANNIT algorithm exactly as described in the text. Yellow curves correspond to  
modified computations where using of archive models were prohibited (equivalently rd = 0 in (13)). Reusing of  
archive models is evidently advantageous since it speeds-up the convergence.



Nevertheless they are identical with first elements of the Taylor's expansion of multidimensional 
smooth  functions,  therefore  they  can  be  good  approximation  to  many  real  physical  problems 
depending on particular coefficients. Averaged convergence tests for randomly set up coefficients 
are then characteristic for the inverse algorithm and the specific features of the forward problem is 
of minor importance.

The  efficiency  of  distinct  prediction  algorithms  for  the  sequence  of  polynomial  problems  is 
summarized in the Fig.4. Any time better candidate solution was discovered, the method currently 
used was recorded. Apart from already described three prediction methods fourth way is possible 
how to generate candidate solution: some model randomly generated as a satellite individual is by 
random from now the best one model. Such cases are depicted in orange (RAND).

16

Fig.4.  Comparison  of  the  efficiency  of  individual  predictors.  Left  part  of  the  graph:  polynomial  problem  of  
dimension 10. Right part of the graph: polynomial problem of dimension 5. Predictors are distinguished by colors.
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Appendix A1. Mean distance between neighbouring points randomly 
distributed along the surface of a hypersphere

Let  us  consider  a  population  of  q models  pi,  i = 1,2,3,...q,  generated  by  the  algorithm  ANNIT. 
Individual models of the population are distributed randomly with a uniform probability along the 
surface  of  an  m-dimensional  hypersphere.  The  origin  of  the  hypersphere  is  considered  in  the 
coordinate origin without any loss of generality. The distance of each model from the hypersphere 
centre (origin) is R. The task is to determine the mean distance dm from the collection of minimum 
distances between all doublets of models:

d ij=∣p i− p j∣,i , j=1,2,3,. ..q ,i≠ j
dq=min d qj

dm=〈dq〉
(A1)

First  the  solution  for  the  dimension  m = 3  will  be  given  for  the  sake  of  clearness.  This  task 
formulated  in  classical  3D space  corresponds  to  random distribution  of  q points  with  uniform 
probability along the surface of a sphere. The area of a sphere is S3 = 4πR2. If this area is covered by 
q points, the area S2 = S3/q = 4πR2/q fall on each point. The sphere can be locally approximated by a 
plane in a proximity of each point for large q (the dimension is reduced to 2) and this part of the 
sphere can be represented by a circle with the diameter  r:  S2 = πr2. Now the area of the original 
sphere and sum of the areas of all circles should be the same, from which the characteristic distance 
between points rd ≈ 2r can be estimated:

S3=4R2 , S 2= r2
=S3/q r 2

=4 R2
/q

rd≈2r=2 R/ q
(A2)

The above approach how to estimate the average span between points is used also in a general m-
dimensional space:

SmR =q.V m−1r  (A3)

where  Sm(R) is  the area of  m-dimensional  hypersphere with the diameter  R (this  was area of a 
classical  sphere  in  the  preceding  example),  and  Vm-1(r)  is  the  volume  of  (m-1)-dimensional 
hypersphere  with  the  diameter  r (area  of  a  classical  circle  in  the  preceding  example).  The 
dependence between the volume and area of a hypersphere with the diameter R is evidently

V m R=V m0 . Rm ,resp. S mR=S m0 . Rm−1

V m0=V m1 , Sm0=S m1
(A4)

where  Vm0 a  Sm0 define characteristic values for a unit hypersphere. Simple relation between area 
and volume holds for hypersphere with a general diameter:

V m R=V m0 Rm
=∫

0

R

Sm0 rm−1 dr=S m0[ r
m

m ]
0

R

=Sm0
Rm

m
=

R
m

Sm

resp.V m=
R
m

Sm

.(A5)

Combining (A3) and (A4) only areas can be considered:
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SmR =q.V m−1r =q
r

m−1
Sm−1r 

or Rm−1 Sm0=q
r

m−1
S m−10r m−2

(A6)

Now the general formula for the area of unit m-dimensional hypersphere Sm0 has to be expressed:

Sm=
2

m
2


m
2


, (A7)

(for  proof  see  www1).  Characteristic  span  rd between  q-points  randomly  distributed  along  the 
surface of the m-dimensional hypersphere is after rearrangement of (A6) and (A7)

r d≈2 r=2 . R .
m−1

q


1
m−1 .

1
2 .


m−1
2



 
m
2


. (A8)

It should be noted that strict physical realization of the presented approach is not possible, since the 
surface of m-dimensional hypersphere cannot be constructed exactly using a set of m-1 dimensional 
hyperspheres.

Appendix A2. Identification of parameters of general linear mapping

The purpose of this part is to show how to extract all necessary coefficients for representation of a 
linear problem by using population of models. Let us consider a linear system

18

Fig.5.  Relative mean distance of  neighbouring points r/R distributed along the surface of a hypersphere as a  
function of q/m: The number of points is q, the diameter of the hypersphere is R and the problem dimension is m.



F  p =Apd c=d (A9)

which has straightforward solution for measured data d0

p0=pinv  Ad0−d c . (A10)

The pinv in (A10) means pseudoinversion, the solvability is subjected by knowing all elements of 
the  matrix  A and  of  the  vector  dc.  The  matrix  A and  vector  dc can  be  determined  from  the 
requirement that all models of the population {pi, di}, i=1,2,3,...q fulfil the same linear relation (A9) 
like the searched for solution:

Ap1d c=d 1

Ap2d c=d 2

...
Apqd c=d q

. (A11)

Averaging (A11) over rows dc can be eliminated:

d c=〈d i 〉−A〈 pi 〉 (A12)

Let us transform the vectors pi a di as follows:

p i
'= p i−〈 p i 〉 ,d i

'=d i−〈d i〉 (A13)

Substituting centred vectors from (A13) into (A11) simpler equations not containing dc are obtained

Ap1
'=d1

'

Ap2
'
=d 2

'

...
Apq

'
=d q

'

. (A14)

Centred vectors d' and p' can be arranged into columns of matrices P' and D'

P '=[ p1
' p2

' ⋯ pq
' ] , D'= [d 1

' d2
' ⋯ dq

' ] (A15)

and equations (A14) can be equivalently expressed in one matrix equation

AP '=D' (A16)

which solution for A is evidently

A=D' pinv  P ' . (A17)

After substituting for A from (A17) into (A12) the vector dc can be obtained. Knowing {A, dc} the 
forward problem, or its linear approximation, is completely defined.

Appendix A3. Typical radial basis functions

Radial basis function can be nearly any smooth function depending on distance. The differences by 
using different types of radial functions will be usually small for interpolation to points inside the 
convex hull of radial function centres. Significant differences will occur for extrapolation to points 
outside the convex hull, when the asymptotic behaviour of the dominant radial function is decisive 
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for  r → inf.  Usually  the  function  value  is  +inf,  -inf,  or  0.  This  unfavourable  feature  of  RBFN 
potentially  causes  instability.  It  is  therefore  desirable  to  avid  extrapolation  regime  by  using 
prediction population with suitable size and location.

ANNIT has been tested with following radial basis functions:

 Gaussian function

h r =e−r2

(A18)

 Quasilinear function

h r =1−r (A19)

 Cauchy function

h r =e−r (A20)

 “Inverse Multiquadric” function

h r =
1

1r 2


(A21)

ANNIT is  currently  working  with  inverse  multiquadric  function.  Using  other  types  of  radial 
functions is also possible.

Appendix A4. Interpolating formulae for the Radial Basis Function 
Network method

Prediction of the vector p0 corresponding to the data vector d0 according (17) is

20

Fig.6. Example of typical radial basis functions. Quasilinear function is composed from linear sections connecting 
the centres of radial functions only in one-dimensional space, otherwise the shape of interpolated function is more  
complicated.



p0
T
=Hw=[

h11 h12 ⋯ h1q

h21 h22 ⋯ h2q

⋯
hq1 hq2 ⋯ hqq

][
h1d 0

h2d 0

⋯
hq d 0

] (A22)

and the  relation  (A22)  should  fit  the  forward  problem (1)  so  close  as  possible.  The  unknown 
coefficients hij can be determined using the requirement that (A22) holds for all individuals of the 
population. Let us use the following notation

w i=[
h1d i

h2d i

⋯
hqd i

] (A23)

then it is possible to write for any pair of vectors pi di, i = 1,2,...q

p1
T=Hw 1 , p2

T=Hw 2 , ... , pq
T=Hw q (A24)

and if the matrices P and W will be constructed from vectors p and w as follows

P=[ p1 p2 ⋯ pq ] ,

W=[ w1 w2 ⋯ wq ]=[
h1d 1 h1d2 ⋯ h1d q

h2d 1 h2d2 ⋯ h2d q

⋯
hqd1 hq d 2 ⋯ hq d q

] (A25)

then (A24) can be collected into one matrix equation

PT=HW (A26)

and coefficients in H to compute using the functions inv or pinv:

H=PT W−1 (A27)

The network of radial functions is chosen such in our case that the number of radial functions is the 
same as is the number of learning individuals. Therefore both the matrices  H and  W are square 
matrices of the q x q dimensions. More general cases can be solved analogously. It is also possible 
to include regularization, when the interpolated values do not reach exactly the learning points. See 
the biblliography at www4 for deeper insight.
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Appendix A5. Differences in interpolation/extrapolation by using 
different approximating methods
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Fig.7. The input functional dependence between d and p is given by polynomial relation

d = 3 – 2p + 0.5p2 – 0.25p3 + 0.0125p4

and since the problem considered is 1D only the vectors  d and  p and scalars in fact. True function is given by 
black line. Then using 10 random points lying on the black curve (not shown here) and inside the learning area  
were used as a population. Three predicting methods giving p for any d are documented by different colours. In 
this case, the RBFN predictor is clearly the best one, but in other circumstances the relations may be completely  
different. Linear predictor will give a straight line in any case, and Kriging will tend to output the average value at  
great distances from the learning area.
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